论文标题
在Grothendieck戒指及其单元组与Picard组的关系
On the Grothendieck ring and the relation of its group of units with the Picard group
论文作者
论文摘要
本文的第一个主要结果断言,如果$ e $和$ e'$是$ a $的同性恋,那么我们有以下规范的同构同构为$ a $ a $ -modules:$$ ae \ oplus ae \ oplus ae'\ simeq ae/ae/ae/ae/ae/ae(1- e'') a(e+e'-2ee')。$$此结果在证明Grothendieck环$ k_ {0}(a)$的几个结果中起着重要作用。尤其是,对于任何可交换的环$ a $,我们获得了以下(拆分)亚洲小组的复合体,这些组合在开始和结束时是:$$ \ xymatrix {0 \ ar [r]&\ pic(a)\ ar [r]&k_ {0}&k_ {0}&k_ {0}(a)(a) $ a^{\ ast} $,我们的意思是$ a $的单位组,以及$ \ mathscr {b}(a)$,我们的意思是$ a $ a $ a $ a $ a $ a $。作为一个应用程序,如果$ a $是一个dedekind域或更一般的noetherian一维环,则我们获得以下Abelian组的拆分精确序列:$ \ xymatrix {0 \ ar [r]&\ pic(a)\ ar [a)\ ar [r] \ ar [r]&\ Mathscr {b}(a)\ ar [r]&0。} $$作为另一个主要结果,对于任何环$ a $,我们获得了Abelian oblian $ \ Mathscr {b}(b}(b}(a)(a)\ simeq \ simeq \ Mathscr {b} b} b} big big big big big(a)的规范同构h_ {0}(a)^{\ ast} $。接下来,我们表明,且仅当诱导的环映射$ k_ {0}(a)(a)\ rightarrow k_ {0}(b)$抬起iDempotents时,我们才表明,$ a \ rightarrow b $ lifts divempotents b $抬起iDempotents。如果此外,$ b $具有有限的最大理想,那么地图$ k_ {0}(a)\ rightArrow k_ {0}(b)$是溢出的。最后,我们表明,当且仅当它的痕迹理想才是环的整个单元理想时,有限生成的投影模块的支持是整个序列。
The first main result of this article asserts that if $e$ and $e'$ are idempotents of a commutative ring $A$, then we have the following canonical isomorphism of $A$-modules: $$Ae\oplus Ae'\simeq Ae/Ae(1-e')\oplus Ae'/Ae'(1-e)\oplus A(e+e'-2ee').$$ This result plays an important role in proving several results on the Grothendieck ring $K_{0}(A)$. Especially, for any commutative ring $A$ we obtain the following (split) complex of Abelian groups which is exact at the beginning and end: $$\xymatrix{0\ar[r]&\Pic(A)\ar[r]&K_{0}(A)^{\ast} \ar[r]&\mathscr{B}(A)\ar[r]&0}$$ where by $A^{\ast}$ we mean the group of units of $A$, and by $\mathscr{B}(A)$ we mean the group of idempotents of $A$. As an application, if $A$ is a Dedekind domain or more generally a Noetherian one dimensional ring, then we obtain the following split exact sequence of Abelian groups: $$\xymatrix{0\ar[r]&\Pic(A)\ar[r]&K_{0}(A)^{\ast} \ar[r]&\mathscr{B}(A)\ar[r]&0.}$$ As another main result, for any ring $A$ we obtain the canonical isomorphisms of Abelian groups $\mathscr{B}(A)\simeq\mathscr{B}\big(K_{0}(A)\big)\simeq H_{0}(A)^{\ast}$. Next, we show that a morphism of rings $A\rightarrow B$ lifts idempotents if and only if the induced ring map $K_{0}(A)\rightarrow K_{0}(B)$ lifts idempotents. If moreover, $B$ has finitely many maximal ideals then the map $K_{0}(A)\rightarrow K_{0}(B)$ is surjective. Finally, we show that the support of a finitely generated projective module is the whole prime spectrum if and only if its trace ideal is the whole unit ideal of the ring.