论文标题

$ \ mathbb {f} _q^d $中的VC-Dimension和距离链

VC-Dimension and Distance Chains in $\mathbb{F}_q^d$

论文作者

Ascoli, Ruben, Betti, Livia, Cheigh, Justin, Iosevich, Alex, Jeong, Ryan, Liu, Xuyan, McDonald, Brian, Milgrim, Wyatt, Miller, Steven J., Acosta, Francisco Romero, Iannuzzelli, Santiago Velazquez

论文摘要

给定一个域$ x $和功能的$ \ MATHCAL {h} $ $ h:x \ to \ {0,1 \} $,vapnik-chervonenkis(vc)$ \ mathcal {h h} $的尺寸在适当的意义上测量其复杂性。特别是,统计学习的基本定理表明,具有有限VC-dimension的假设类是可以学习的。 Recent work by Fitzpatrick, Wyman, the fourth and seventh named authors studied the VC-dimension of a natural family of functions $\mathcal{H}_t^{'2}(E): \mathbb{F}_q^2\to \{0,1\}$, corresponding to indicator functions of circles centered at points in a subset $ e \ subseteq \ mathbb {f} _q^2 $。他们表明,当$ | e | $足够大时,$ \ mathcal {h} _t^{'2}(e)$的VC-dimension与$ e = \ Mathbb f_q^2 $相同。我们研究了相关的假设类,$ \ mathcal {h} _t^d(e)$,对应于$ \ mathbb {f} _q^d $中的球体相对应,并询问多大$ \ e \ subseteq \ subseteq \ mathbb {f} _q^d $需要以确保最大可能的earsionsions。我们在各个方面解决此问题,证明每当$ | e | e | e | e | e | e | geq c_dq^{d-1/(d-1)} $对于$ d \ geq 3 $,$ \ mathcal {h} _t _t^d(e)$的vc-dimension a wisti-dimension of vc-dimension of vc-dimension of the vc-dimension of the vc-dimension of the vc-dimension of the vc-dimension _t _t _t^d(e)$是尽可能大的。如果$ d = 3 $:此结果将保持较长的效果,那么我们将获得更强大的结果。此外,当$ d = 2 $ $ | e | e | \ geq c_2 q^{7/4} $时,结果会成立。

Given a domain $X$ and a collection $\mathcal{H}$ of functions $h:X\to \{0,1\}$, the Vapnik-Chervonenkis (VC) dimension of $\mathcal{H}$ measures its complexity in an appropriate sense. In particular, the fundamental theorem of statistical learning says that a hypothesis class with finite VC-dimension is PAC learnable. Recent work by Fitzpatrick, Wyman, the fourth and seventh named authors studied the VC-dimension of a natural family of functions $\mathcal{H}_t^{'2}(E): \mathbb{F}_q^2\to \{0,1\}$, corresponding to indicator functions of circles centered at points in a subset $E\subseteq \mathbb{F}_q^2$. They showed that when $|E|$ is large enough, the VC-dimension of $\mathcal{H}_t^{'2}(E)$ is the same as in the case that $E = \mathbb F_q^2$. We study a related hypothesis class, $\mathcal{H}_t^d(E)$, corresponding to intersections of spheres in $\mathbb{F}_q^d$, and ask how large $E\subseteq \mathbb{F}_q^d$ needs to be to ensure the maximum possible VC-dimension. We resolve this problem in all dimensions, proving that whenever $|E|\geq C_dq^{d-1/(d-1)}$ for $d\geq 3$, the VC-dimension of $\mathcal{H}_t^d(E)$ is as large as possible. We get a slightly stronger result if $d=3$: this result holds as long as $|E|\geq C_3 q^{7/3}$. Furthermore, when $d=2$ the result holds when $|E|\geq C_2 q^{7/4}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源