论文标题
哈伯德模型量子模拟器的贝叶斯自动调节
Bayesian autotuning of Hubbard model quantum simulators
论文作者
论文摘要
封闭式半导体量子点(QD)中的旋转是哈伯德模型仿真无法访问的有前途的平台。通过在金属门上调整电压对隧道耦合的精确控制对于成功的基于QD的模拟器至关重要。但是,可调电压的数量以及栅极电压与所得哈伯德模型参数之间关系的复杂性迅速随量子点的数量而迅速增加。结果,尚不清楚是否以及特定的门几何形状如何产生目标哈伯德模型。为了解决这个问题,我们建议使用支持向量机(SVM)和贝叶斯优化(BO)的组合进行混合机器学习方法,以识别实现所需Hubbard模型的电压组合。 SVM通过拒绝电压组合来限制电压空间,从而产生不适合紧密结合(TB)近似的电势。然后,BO在约束亚域中通过BO鉴定目标电压组合。对于大型QD阵列,我们使用我们的SVM-BO方法提出了可扩展的有效迭代过程,该方法优化了电压子集并利用了大型系统的两QD SVM模型。我们的结果使用实验栅极光刻图像和使用谐波轨道线性组合计算的精确积分来训练机器学习算法。
Spins in gated semiconductor quantum dots (QDs) are a promising platform for Hubbard model simulation inaccessible to computation. Precise control of the tunnel couplings by tuning voltages on metallic gates is vital for a successful QD-based simulator. However, the number of tunable voltages and the complexity of the relationships between gate voltages and the parameters of the resulting Hubbard models quickly increase with the number of quantum dots. As a consequence, it is not known if and how a particular gate geometry yields a target Hubbard model. To solve this problem, we propose a hybrid machine-learning approach using a combination of support vector machines (SVMs) and Bayesian optimization (BO) to identify combinations of voltages that realize a desired Hubbard model. SVM constrains the space of voltages by rejecting voltage combinations producing potentials unsuitable for tight-binding (TB) approximation. The target voltage combinations are then identified by BO in the constrained subdomain. For large QD arrays, we propose a scalable efficient iterative procedure using our SVM-BO approach, which optimises voltage subsets and utilises a two-QD SVM model for large systems. Our results use experimental gate lithography images and accurate integrals calculated with linear combinations of harmonic orbitals to train the machine learning algorithms.