论文标题
用于基于门的量子计算的扰动小工具:无子空间限制的非收回构造
Perturbative gadgets for gate-based quantum computing: Non-recursive constructions without subspace restrictions
论文作者
论文摘要
扰动小工具是将哈密顿量(通常是低能量子空间)编码为具有有利特性的不同哈密顿量的一部分的工具。多年来,已经提出了许多扰动小工具的结构。尽管如此,所有这些都受到某种方式受到限制:它们要么适用于某些特定类别的哈密顿量,因此涉及递归以减少地方性,或者仅限于在摄影量哈密顿量下的时间演变,例如,在绝热量子计算的背景下,因此涉及子空间限制。在这项工作中,我们通过在没有子空间限制的情况下引入多功能通用,非恢复性,非渗透性扰动的小工具结构,该构造编码任意的多体汉密尔顿人,并将其用于三体汉密尔顿的低能亚空间,因此适用于基于门的量子计算。我们的施工需要$ rk $ $ $ k $ - hamiltonian,包括$ r $项。除了特定的小工具结构外,我们还提供了构造类似小工具的配方,可以针对不同的特性量身定制。
Perturbative gadgets are a tool to encode part of a Hamiltonian, usually the low-energy subspace, into a different Hamiltonian with favorable properties, for instance, reduced locality. Many constructions of perturbative gadgets have been proposed over the years. Still, all of them are restricted in some ways: Either they apply to some specific classes of Hamiltonians, they involve recursion to reduce locality, or they are limited to studying time evolution under the gadget Hamiltonian, e.g., in the context of adiabatic quantum computing, and thus involve subspace restrictions. In this work, we fill the gap by introducing a versatile universal, non-recursive, non-adiabatic perturbative gadget construction without subspace restrictions, that encodes an arbitrary many-body Hamiltonian into the low-energy subspace of a three-body Hamiltonian and is therefore applicable to gate-based quantum computing. Our construction requires $rk$ additional qubits for a $k$-body Hamiltonian comprising $r$ terms. Besides a specific gadget construction, we also provide a recipe for constructing similar gadgets, which can be tailored to different properties, which we discuss.