论文标题

基于内容的搜索深层生成模型

Content-Based Search for Deep Generative Models

论文作者

Lu, Daohan, Wang, Sheng-Yu, Kumari, Nupur, Agarwal, Rohan, Tang, Mia, Bau, David, Zhu, Jun-Yan

论文摘要

自定义和预识别的生成模型的增殖日益增强,使用户完全认识到存在的每个模型都不可见。为了满足这种需求,我们介绍了基于内容的模型搜索的任务:给定查询和大量生成模型,找到最适合查询的模型。由于每个生成模型都会产生图像的分布,我们将搜索任务作为优化问题,以选择具有与查询类似内容的最高概率的模型。我们引入了一个公式,以鉴于来自不同模态的查询,例如图像,草图和文本。此外,我们为模型检索提出了一个对比度学习框架,该框架学会了适应各种查询方式的功能。我们证明,我们的方法优于生成模型动物园的几个基准,这是我们为模型检索任务创建的新基准测试。

The growing proliferation of customized and pretrained generative models has made it infeasible for a user to be fully cognizant of every model in existence. To address this need, we introduce the task of content-based model search: given a query and a large set of generative models, finding the models that best match the query. As each generative model produces a distribution of images, we formulate the search task as an optimization problem to select the model with the highest probability of generating similar content as the query. We introduce a formulation to approximate this probability given the query from different modalities, e.g., image, sketch, and text. Furthermore, we propose a contrastive learning framework for model retrieval, which learns to adapt features for various query modalities. We demonstrate that our method outperforms several baselines on Generative Model Zoo, a new benchmark we create for the model retrieval task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源