论文标题
变性量子连续优化:量子数学分析的基石
Variational Quantum Continuous Optimization: a Cornerstone of Quantum Mathematical Analysis
论文作者
论文摘要
在这里,我们展示了基于量子电路模型的通用量子计算机如何处理具有连续域,没有任何数字化的功能的数学分析计算,而且量子明显很少。我们方法的基本构建块是一个变性量子电路,其中每个量子位最多编码三个连续变量(在Bloch球体中有两个角度和一个辐射)。通过将此编码与量子状态层析成像相结合,$ n $ Qubits的变异量子电路可以以模拟方式优化高达$ 3N $连续变量的功能。然后,我们解释了用于连续优化的量子算法是在整个工具箱的基础上,用于量子计算机的数学分析。例如,我们展示如何使用它来计算任意串联扩展,例如,例如傅立叶(谐波)分解。反过来,傅立叶分析使我们能够实现与功能计算有关的任何任务,包括评估多维确定积分,求解(系统)微分方程等等。为了证明我们方法的有效性,我们为在量子计算机模拟器上实现的许多用例提供基准计算。还讨论了关于数学分析的经典算法以及观点和可能的扩展的优势。
Here we show how universal quantum computers based on the quantum circuit model can handle mathematical analysis calculations for functions with continuous domains, without any digitalization, and with remarkably few qubits. The basic building block of our approach is a variational quantum circuit where each qubit encodes up to three continuous variables (two angles and one radious in the Bloch sphere). By combining this encoding with quantum state tomography, a variational quantum circuit of $n$ qubits can optimize functions of up to $3n$ continuous variables in an analog way. We then explain how this quantum algorithm for continuous optimization is at the basis of a whole toolbox for mathematical analysis on quantum computers. For instance, we show how to use it to compute arbitrary series expansions such as, e.g., Fourier (harmonic) decompositions. In turn, Fourier analysis allows us to implement essentially any task related to function calculus, including the evaluation of multidimensional definite integrals, solving (systems of) differential equations, and more. To prove the validity of our approach, we provide benchmarking calculations for many of these use-cases implemented on a quantum computer simulator. The advantages with respect to classical algorithms for mathematical analysis, as well as perspectives and possible extensions, are also discussed.