论文标题

自图的轨道与Semiabelian品种中亚组的轨道交叉点

Intersections of orbits of self-maps with subgroups in semiabelian varieties

论文作者

Bell, Jason P., Ghioca, Dragos

论文摘要

让$ g $为在代数封闭的$ k $上定义的半近婚夫品种,并具有理性的自动图$φ$。令$α\在g(k)$中,让$γ\ subseteq g(k)$为有限生成的子组。我们表明,集合$ \ {n \ in \ mathbb {n} \colonφ^n(α)\ inγ\} $是有限的许多算术进程的结合,以及一组Banach密度,等于$ 0 $。此外,假设$φ$是常规的,我们证明了集合$ S $必须是有限的。

Let $G$ be a semiabelian variety defined over an algebraically closed field $K$, endowed with a rational self-map $Φ$. Let $α\in G(K)$ and let $Γ\subseteq G(K)$ be a finitely generated subgroup. We show that the set $\{n\in\mathbb{N}\colon Φ^n(α)\in Γ\}$ is a union of finitely many arithmetic progressions along with a set of Banach density equal to $0$. In addition, assuming $Φ$ is regular, we prove that the set $S$ must be finite.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源