论文标题
Aemulus项目VI:超出标准星系聚类统计数据以改善宇宙学约束
The Aemulus Project VI: Emulation of beyond-standard galaxy clustering statistics to improve cosmological constraints
论文作者
论文摘要
非线性政权中的星系红移调查中有未开发的宇宙学信息。在这项工作中,我们使用宇宙学$ n $模拟的Aemulus套件来构建高尺度($ 0.1-50 \:H^{ - 1} \,\ Mathrm {MPC} $)的Gaussian Process模拟器,以约束宇宙学和星系偏见。除标准统计数据外 - 预计的相关函数$ w_ \ mathrm {p}(r_ \ mathrm {p})$,相关函数的红移空间$ξ_0(s)$,Quadrupole $之一$ P_ \ Mathrm {U}(S)$和密度标记的相关函数$ M(S)$。这扩展了Aemulus III的模型,用于红移空间扭曲,包括对星系组装偏置敏感的新统计数据。在恢复测试中,我们发现,超级标准统计数据显着提高了感兴趣的宇宙学参数的约束功能:包括$ p_ \ mathrm {u}(s)$和$ m(s)$,提高了我们对$ω_m$ $ $ $ $ $ω的限制的精确度,$σ_8,$σ_8$ camsistical ustrance cartrucation n struction $ f s $ f s camsistion,$ f s。此外,我们发现比例以下$ \ sim6 \:h^{ - 1} \,\ mathrm {mpc} $包含与较大比例一样多的信息。密度敏感的统计数据还有助于限制光环占用分布参数和灵活的环境依赖性组装偏置模型,这对于提取小规模的宇宙学信息以及了解星系 - 霍洛连接非常重要。该分析表明,在小尺度上模拟超越标准聚类统计的潜力以限制结构的生长作为宇宙加速度的测试。
There is untapped cosmological information in galaxy redshift surveys in the non-linear regime. In this work, we use the AEMULUS suite of cosmological $N$-body simulations to construct Gaussian process emulators of galaxy clustering statistics at small scales ($0.1-50 \: h^{-1}\,\mathrm{Mpc}$) in order to constrain cosmological and galaxy bias parameters. In addition to standard statistics -- the projected correlation function $w_\mathrm{p}(r_\mathrm{p})$, the redshift-space monopole of the correlation function $ξ_0(s)$, and the quadrupole $ξ_2(s)$ -- we emulate statistics that include information about the local environment, namely the underdensity probability function $P_\mathrm{U}(s)$ and the density-marked correlation function $M(s)$. This extends the model of AEMULUS III for redshift-space distortions by including new statistics sensitive to galaxy assembly bias. In recovery tests, we find that the beyond-standard statistics significantly increase the constraining power on cosmological parameters of interest: including $P_\mathrm{U}(s)$ and $M(s)$ improves the precision of our constraints on $Ω_m$ by 27%, $σ_8$ by 19%, and the growth of structure parameter, $f σ_8$, by 12% compared to standard statistics. We additionally find that scales below $\sim6 \: h^{-1}\,\mathrm{Mpc}$ contain as much information as larger scales. The density-sensitive statistics also contribute to constraining halo occupation distribution parameters and a flexible environment-dependent assembly bias model, which is important for extracting the small-scale cosmological information as well as understanding the galaxy-halo connection. This analysis demonstrates the potential of emulating beyond-standard clustering statistics at small scales to constrain the growth of structure as a test of cosmic acceleration.