论文标题

PQLM-多语言分散的便携式量子语言模型用于隐私保护

PQLM -- Multilingual Decentralized Portable Quantum Language Model for Privacy Protection

论文作者

Li, Shuyue Stella, Zhang, Xiangyu, Zhou, Shu, Shu, Hongchao, Liang, Ruixing, Liu, Hexin, Garcia, Leibny Paola

论文摘要

通过仔细操纵,恶意代理可以反向工程师用预训练的语言模型编码的私人信息。安全问题激发了量子预训练的发展。在这项工作中,我们提出了一个高度便携式的量子语言模型(PQLM),该模型可以轻松地将信息传输到古典机器上的下游任务。该框架由一个带有随机变分量子分类器(VQC)的云PQLM和用于下游应用程序的本地模型组成。我们通过仅提取单词嵌入并有效地将其应用于经典机器上的下游任务来证明量子模型的临时可移植性。我们的PQLM在内在评估(丢失,困惑)和外在评估(多语言情感分析精度)指标上表现出与其经典的表现相当的性能。我们还对影响PQLM性能的因素进行消融研究以分析模型稳定性。我们的工作为便携式量子预训练的语言模型建立了理论基础,该模型可以接受私人数据培训,并可以供公众使用,并提供隐私保护保证。

With careful manipulation, malicious agents can reverse engineer private information encoded in pre-trained language models. Security concerns motivate the development of quantum pre-training. In this work, we propose a highly Portable Quantum Language Model (PQLM) that can easily transmit information to downstream tasks on classical machines. The framework consists of a cloud PQLM built with random Variational Quantum Classifiers (VQC) and local models for downstream applications. We demonstrate the ad hoc portability of the quantum model by extracting only the word embeddings and effectively applying them to downstream tasks on classical machines. Our PQLM exhibits comparable performance to its classical counterpart on both intrinsic evaluation (loss, perplexity) and extrinsic evaluation (multilingual sentiment analysis accuracy) metrics. We also perform ablation studies on the factors affecting PQLM performance to analyze model stability. Our work establishes a theoretical foundation for a portable quantum pre-trained language model that could be trained on private data and made available for public use with privacy protection guarantees.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源