论文标题
气候变化的汽车:行动呼吁
AutoML for Climate Change: A Call to Action
论文作者
论文摘要
气候变化对人类构成的挑战刺激了一个迅速发展的人工智能研究领域,重点是气候变化应用。气候变化AI(CCAI)社区致力于各种各样的,具有挑战性的问题,这些问题通常涉及物理受限的ML或异构时空数据。希望使用自动化的机器学习(AUTOML)技术自动为给定数据集找到高性能的体系结构和超参数。在这项工作中,我们在三个高杠杆CCAI应用程序上基准了流行的汽车库:气候建模,风能预测和催化剂发现。我们发现,现成的汽车库目前未能有意义地超过人类设计的CCAI模型的性能。但是,我们还确定了一些关键弱点,这是由于大多数汽车技术都是根据计算机视觉和NLP应用程序量身定制的。例如,尽管已经为图像和语言数据设计了数十个搜索空间,但没有设计用于时空数据。解决这些关键弱点可能会导致发现新型体系结构,这些新体系结构在众多CCAI应用中产生可观的性能增长。因此,我们向Automl社区提出了呼吁,因为在CCAI的Automl空间中有许多具体的,有希望的指示。我们在https://github.com/climate-change-automl/climate-change-automl上发布代码和资源列表。
The challenge that climate change poses to humanity has spurred a rapidly developing field of artificial intelligence research focused on climate change applications. The climate change AI (CCAI) community works on a diverse, challenging set of problems which often involve physics-constrained ML or heterogeneous spatiotemporal data. It would be desirable to use automated machine learning (AutoML) techniques to automatically find high-performing architectures and hyperparameters for a given dataset. In this work, we benchmark popular AutoML libraries on three high-leverage CCAI applications: climate modeling, wind power forecasting, and catalyst discovery. We find that out-of-the-box AutoML libraries currently fail to meaningfully surpass the performance of human-designed CCAI models. However, we also identify a few key weaknesses, which stem from the fact that most AutoML techniques are tailored to computer vision and NLP applications. For example, while dozens of search spaces have been designed for image and language data, none have been designed for spatiotemporal data. Addressing these key weaknesses can lead to the discovery of novel architectures that yield substantial performance gains across numerous CCAI applications. Therefore, we present a call to action to the AutoML community, since there are a number of concrete, promising directions for future work in the space of AutoML for CCAI. We release our code and a list of resources at https://github.com/climate-change-automl/climate-change-automl.