论文标题

使用转移学习和石灰的可解释基于AI的青光眼检测

Explainable AI based Glaucoma Detection using Transfer Learning and LIME

论文作者

Chayan, Touhidul Islam, Islam, Anita, Rahman, Eftykhar, Reza, Md. Tanzim, Apon, Tasnim Sakib, Alam, MD. Golam Rabiul

论文摘要

青光眼是所有视觉缺陷中部分或完全失明的第二个驾驶理由,这主要是由于焦虑或抑郁症导致眼睛的压力过大,这会损害视神经并引起视力并发症。传统的青光眼筛查是一个耗时的过程,需要医疗专业人员的持续关注,甚至由于时间的限制和压力,他们无法正确地分类,从而导致错误的治疗。为了使整个青光眼分类程序自动化,已经做出了许多努力,但是,这些现有模型通常具有黑匣子特征,可以阻止用户理解预测背后的关键原因,因此医生通常无法依靠这些系统。在与各种预训练模型进行比较之后,我们提出了一个能够以94.71 \%精度对青光眼进行分类的转移学习模型。此外,我们还利用了局部可解释的模型不足的解释(LIME),该解释介绍了我们系统中的解释性。这种改进使医疗专业人员获得重要而全面的信息,以帮助他们做出判断。它还减少了传统深度学习模型的不透明度和脆弱性。

Glaucoma is the second driving reason for partial or complete blindness among all the visual deficiencies which mainly occurs because of excessive pressure in the eye due to anxiety or depression which damages the optic nerve and creates complications in vision. Traditional glaucoma screening is a time-consuming process that necessitates the medical professionals' constant attention, and even so time to time due to the time constrains and pressure they fail to classify correctly that leads to wrong treatment. Numerous efforts have been made to automate the entire glaucoma classification procedure however, these existing models in general have a black box characteristics that prevents users from understanding the key reasons behind the prediction and thus medical practitioners generally can not rely on these system. In this article after comparing with various pre-trained models, we propose a transfer learning model that is able to classify Glaucoma with 94.71\% accuracy. In addition, we have utilized Local Interpretable Model-Agnostic Explanations(LIME) that introduces explainability in our system. This improvement enables medical professionals obtain important and comprehensive information that aid them in making judgments. It also lessen the opacity and fragility of the traditional deep learning models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源