论文标题
关于对称与功能性PCSP的复杂性
On the complexity of symmetric vs. functional PCSPs
论文作者
论文摘要
承诺约束满意度问题的复杂性$ \ peratatorName {pcsp}(\ MathBf {a},\ MathBf {b})$在很大程度上是未知的,即使对于对称$ \ Mathbf {a} $和$ \ Mathbf {b} $的对称$ \ Mathbf {A a} $,除了$ \ m athbf $ \ the $ \ the $ \ the $ \ the $ \ the $ \\ a} a} a} a}布尔。 首先,我们为$ \ operatoTorname {pcsp}(\ mathbf {a},\ mathbf {b})$建立了二分法,其中$ \ m artbf {a},\ mathbf {b} $是对称的,symortric,symmetric,$ \ mathbf {b} $ $ e $ $ - 最后一个)和$(\ mathbf {a},\ mathbf {b})$满足我们介绍的技术条件,称为依赖关系和添加性。该结果暗示了$ \ peratatOrName {pcsp}(\ MathBf {a},\ Mathbf {b})$,带有$ \ Mathbf {a},\ Mathbf {a},\ Mathbf {b} $ Symmetric and symmetric and $ \ mathbf {b} $ $ \ mathbf {a} $是一个小均匀性的超图,或(iii)$ \ mathbf {a} $具有关系$ r^{\ mathbf {a}} $,至少为3至少3个,以至于$(a,r^{a,r^{\ mathbff {a at at at at at at at at at y is at y hymerthaph aftraph ofertiations a arity of Arity of Arity to to HyperPraph atity 3。 Second, we show that for $\operatorname{PCSP}(\mathbf{A},\mathbf{B})$, where $\mathbf{A}$ and $\mathbf{B}$ contain a single relation, $\mathbf{A}$ satisfies a technical condition called balancedness, and $\mathbf{B}$ is arbitrary, the combined基本的线性编程松弛(BLP)和仿射整数编程松弛(AIP)并不比(一般而言严格弱)AIP放松更强大。均衡$ \ mathbf {a} $包括对称$ \ mathbf {a} $,或者更一般而言,$ \ mathbf {a} $由瞬时置换组保留。
The complexity of the promise constraint satisfaction problem $\operatorname{PCSP}(\mathbf{A},\mathbf{B})$ is largely unknown, even for symmetric $\mathbf{A}$ and $\mathbf{B}$, except for the case when $\mathbf{A}$ and $\mathbf{B}$ are Boolean. First, we establish a dichotomy for $\operatorname{PCSP}(\mathbf{A},\mathbf{B})$ where $\mathbf{A}, \mathbf{B}$ are symmetric, $\mathbf{B}$ is functional (i.e. any $r-1$ elements of an $r$-ary tuple uniquely determines the last one), and $(\mathbf{A},\mathbf{B})$ satisfies technical conditions we introduce called dependency and additivity. This result implies a dichotomy for $\operatorname{PCSP}(\mathbf{A},\mathbf{B})$ with $\mathbf{A},\mathbf{B}$ symmetric and $\mathbf{B}$ functional if (i) $\mathbf{A}$ is Boolean, or (ii) $\mathbf{A}$ is a hypergraph of a small uniformity, or (iii) $\mathbf{A}$ has a relation $R^{\mathbf{A}}$ of arity at least 3 such that the hypergraph diameter of $(A, R^{\mathbf{A}})$ is at most 1. Second, we show that for $\operatorname{PCSP}(\mathbf{A},\mathbf{B})$, where $\mathbf{A}$ and $\mathbf{B}$ contain a single relation, $\mathbf{A}$ satisfies a technical condition called balancedness, and $\mathbf{B}$ is arbitrary, the combined basic linear programming relaxation (BLP) and the affine integer programming relaxation (AIP) is no more powerful than the (in general strictly weaker) AIP relaxation. Balanced $\mathbf{A}$ include symmetric $\mathbf{A}$ or, more generally, $\mathbf{A}$ preserved by a transitive permutation group.