论文标题

chalcogen-Hyperdoped Silicon中的中和远红外局部表面等离子体共振

Mid- and far-infrared localized surface plasmon resonances in chalcogen-hyperdoped silicon

论文作者

Wang, Mao, Yu, Ye, Prucnal, Slawomir, Berencén, Yonder, Shaikh, Mohd Saif, Rebohle, Lars, Khan, Muhammad Bilal, Zviagin, Vitaly, Hübner, René, Pashkin, Alexej, Erbe, Artur, Georgiev, Yordan M., Grundmann, Marius, Helm, Manfred, Kirchner, Robert, Zhou, Shengqiang

论文摘要

红外区域中的等离子传感采用了分子振动指纹与等离子共振的直接相互作用,从而产生了比传统光谱法优于表面增强的传感平台。但是,用于等离子共振的标准贵族遭受了高辐射损失和制造挑战,例如将光谱共振位置调整为中部至远红外区域,以及与现有互补金属氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物(CMOS)制造平台。在这里,我们证明了在薄的Si膜中发生中红外局部表面等离子体共振(LSPR),该薄膜与已知的深层杂质Tellurium超填充。我们表明,通过在Te-Hyperdop的Si芯片中制造二维阵列,可以进一步增强中红外LSPR,并通过在二维阵列中制造二维阵列,从而进一步增强并延伸到远红外范围。由于Te-Hyperdoped Si也可以用作红外光电探测器,因此我们认为,我们的结果将解锁等离子传感器与单芯片CMOS平台直接整合的途径,从而大大推动了大量生产高表现等离子传感系统的可能性。

Plasmonic sensing in the infrared region employs the direct interaction of the vibrational fingerprints of molecules with the plasmonic resonances, creating surface-enhanced sensing platforms that are superior than the traditional spectroscopy. However, the standard noble metals used for plasmonic resonances suffer from high radiative losses as well as fabrication challenges, such as tuning the spectral resonance positions into mid- to far-infrared regions, and the compatibility issue with the existing complementary metal-oxide-semiconductor (CMOS) manufacturing platform. Here, we demonstrate the occurrence of mid-infrared localized surface plasmon resonances (LSPR) in thin Si films hyperdoped with the known deep-level impurity tellurium. We show that the mid-infrared LSPR can be further enhanced and spectrally extended to the far-infrared range by fabricating two-dimensional arrays of micrometer-sized antennas in a Te-hyperdoped Si chip. Since Te-hyperdoped Si can also work as an infrared photodetector, we believe that our results will unlock the route toward the direct integration of plasmonic sensors with the one-chip CMOS platform, greatly advancing the possibility of mass manufacturing of high-performance plasmonic sensing systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源