论文标题
部分可观测时空混沌系统的无模型预测
An arithmetic valuative criterion for proper maps of tame algebraic stacks
论文作者
论文摘要
适当地图的评估标准在算术中具有许多应用,例如专门化$ \ mathbb {q} _ {p} $ - 指向$ \ mathbb {f} _ {p} $ - 点。对于代数堆栈,适当地图的通常的评估标准不适合这些论点,因为它仅给出了一个专业点,而在残留场的扩展上定义了一个专业,例如a $ \ mathbb {q} _ {p} $ - 点将专门针对$ \ mathbb {f} _ {p^{n}} $ - 点$ n $。我们为适当的温和堆栈图提供了新的评估标准,该标准可以解决此问题,并且非常适合算术应用。结果,我们证明了lang-nishimura定理可用于温和的堆栈。
The valuative criterion for proper maps of schemes has many applications in arithmetic, e.g. specializing $\mathbb{Q}_{p}$-points to $\mathbb{F}_{p}$-points. For algebraic stacks, the usual valuative criterion for proper maps is ill-suited for these kind of arguments, since it only gives a specialization point defined over an extension of the residue field, e.g. a $\mathbb{Q}_{p}$-point will specialize to an $\mathbb{F}_{p^{n}}$-point for some $n$. We give a new valuative criterion for proper maps of tame stacks which solves this problem and is well-suited for arithmetic applications. As a consequence, we prove that the Lang-Nishimura theorem holds for tame stacks.