论文标题

PAC隐私:自动隐私测量和数据处理的控制

PAC Privacy: Automatic Privacy Measurement and Control of Data Processing

论文作者

Xiao, Hanshen, Devadas, Srinivas

论文摘要

我们建议并研究一个新的隐私定义,称为大约正确的(PAC)隐私。 PAC隐私表征了信息理论硬度,以在任何处理过程中/之后恢复任意信息披露/泄漏的敏感数据。与经典的加密定义和差异隐私(DP)不同,它考虑了对抗性(独立于输入)最坏情况,PAC隐私是一个可模拟的指标,可量化基于实例的推理的不可能。提出了一个全自动的分析和证明生成框架:可以通过蒙特卡洛模拟对任何黑框数据处理Oracle以任意置信度而生产安全参数。这种有吸引力的自动化属性可以分析复杂的数据处理,在经典隐私制度中,最坏的证明可能是松散甚至棘手的。此外,我们表明,生产的PAC隐私保证享有简单的组成范围,并且可以以在线方式实施自动分析框架,以分析复合PAC隐私损失,即使在相关的随机性下也是如此。在实用方面,PAC隐私所需的(必要的)扰动的大小不是由theta(\ sqrt {d})限制的D维释放,但对于许多实用的数据处理任务而言,这与无独立的不依赖于输入无关的case case信息相反,可能是O(1)。与现有作品进行比较,包括PAC隐私的示例应用程序。

We propose and study a new privacy definition, termed Probably Approximately Correct (PAC) Privacy. PAC Privacy characterizes the information-theoretic hardness to recover sensitive data given arbitrary information disclosure/leakage during/after any processing. Unlike the classic cryptographic definition and Differential Privacy (DP), which consider the adversarial (input-independent) worst case, PAC Privacy is a simulatable metric that quantifies the instance-based impossibility of inference. A fully automatic analysis and proof generation framework is proposed: security parameters can be produced with arbitrarily high confidence via Monte-Carlo simulation for any black-box data processing oracle. This appealing automation property enables analysis of complicated data processing, where the worst-case proof in the classic privacy regime could be loose or even intractable. Moreover, we show that the produced PAC Privacy guarantees enjoy simple composition bounds and the automatic analysis framework can be implemented in an online fashion to analyze the composite PAC Privacy loss even under correlated randomness. On the utility side, the magnitude of (necessary) perturbation required in PAC Privacy is not lower bounded by Theta(\sqrt{d}) for a d-dimensional release but could be O(1) for many practical data processing tasks, which is in contrast to the input-independent worst-case information-theoretic lower bound. Example applications of PAC Privacy are included with comparisons to existing works.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源