论文标题

Hypergraph Ramsey数量的集团与恒星

Hypergraph Ramsey numbers of cliques versus stars

论文作者

Conlon, David, Fox, Jacob, He, Xiaoyu, Mubayi, Dhruv, Suk, Andrew, Verstraete, Jacques

论文摘要

令$ k_m^{(3)} $表示完整的$ 3 $ - 均匀的超图和$ m $顶点和$ s_n^{(3)} $ $ 3 $ - 均匀的hypergraph上的$ n+1 $ n+1 $ pertices,由所有$ \ binom {n} {2} $ edges组成的所有$ n+1 $ tertices to to to to to to to to to to to to to to to to to to to to to to to vertex。虽然大多数多数级或至少是指数级增长的许多超图拉姆西的数字,但我们表明,偏离的ramsey数字$ r(k_ {4}^{(3)},s_n^{(3)} $ r(k_ {4}^{(3)},s_n^{(3)})\ le 2^{c'n^{2/3} \ log n} \],对于某些积极常数$ c $和$ c'$。这些边界的证明带来了一个新颖的拉姆西问题,这可能引起独立的兴趣:什么是最低$ n $,使得笛卡尔产品的任何$ 2 $ - edge颜色$ k_n \ square k_n $包含红色矩形或蓝色$ k_n $?

Let $K_m^{(3)}$ denote the complete $3$-uniform hypergraph on $m$ vertices and $S_n^{(3)}$ the $3$-uniform hypergraph on $n+1$ vertices consisting of all $\binom{n}{2}$ edges incident to a given vertex. Whereas many hypergraph Ramsey numbers grow either at most polynomially or at least exponentially, we show that the off-diagonal Ramsey number $r(K_{4}^{(3)},S_n^{(3)})$ exhibits an unusual intermediate growth rate, namely, \[ 2^{c \log^2 n} \le r(K_{4}^{(3)},S_n^{(3)}) \le 2^{c' n^{2/3}\log n} \] for some positive constants $c$ and $c'$. The proof of these bounds brings in a novel Ramsey problem on grid graphs which may be of independent interest: what is the minimum $N$ such that any $2$-edge-coloring of the Cartesian product $K_N \square K_N$ contains either a red rectangle or a blue $K_n$?

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源