论文标题

$(1+(λ,λ))$全局半算法

The $(1+(λ,λ))$ Global SEMO Algorithm

论文作者

Doerr, Benjamin, Hadri, Omar El, Pinard, Adrien

论文摘要

$(1+(λ,λ))$遗传算法是最近提出的具有几种有趣属性的单目标进化算法。我们表明,它的主要工作原理,高率的突变,也可以将其作为修复机制作为修复机制,也可以运输到多目标进化计算中。我们定义了$(1+(λ,λ))$全局半算法,这是经典全局半算法的变体,并证明它比全局半月更快地优化了OneMinmax基准测试速度。按照单一目标示例,我们设计了一个五分之一的启发性动态参数设置(在离散的多目标优化方面,我们首次获得了最佳知识),并证明它将运行时进一步提高到$ O(n^2)$,而全球SEMO的最佳运行时保证只有$ O(N^2 \ log n^2 \ log n)$。

The $(1+(λ,λ))$ genetic algorithm is a recently proposed single-objective evolutionary algorithm with several interesting properties. We show that its main working principle, mutation with a high rate and crossover as repair mechanism, can be transported also to multi-objective evolutionary computation. We define the $(1+(λ,λ))$ global SEMO algorithm, a variant of the classic global SEMO algorithm, and prove that it optimizes the OneMinMax benchmark asymptotically faster than the global SEMO. Following the single-objective example, we design a one-fifth rule inspired dynamic parameter setting (to the best of our knowledge for the first time in discrete multi-objective optimization) and prove that it further improves the runtime to $O(n^2)$, whereas the best runtime guarantee for the global SEMO is only $O(n^2 \log n)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源