论文标题

在最近的邻居跳跃过程之外,石墨烯中的高能兰道水平:有效的迪拉克汉密尔顿的校正

High-energy Landau levels in graphene beyond nearest-neighbor hopping processes: Corrections to the effective Dirac Hamiltonian

论文作者

Vidarte, Kevin J. U., Lewenkopf, Caio

论文摘要

我们研究了散装石墨烯单层的Landau水平频谱,并以线性分散为单位。我们考虑了一种有效的类似Wannier的紧密结合模型,该模型从从头开始计算中获得,其中包括远程电子跳跃术语。我们采用Haydock-Heine-kelly递归方法来计算量子厅制度中散装石墨烯的Landau水平谱,并证明该方法既准确又计算,远比用于此类研究的标准数值方法要快得多。对于有效的哈密顿量,兰道水平的能量也可以分析获得,该有效的哈密顿量最高为第三个最近的邻居跳跃过程。我们发现这两种方法之间的一致性都很好。我们还研究疾病对电子光谱的影响。我们的分析有助于阐明高能量Landau水平能量的理论与实验之间的差异。

We study the Landau level spectrum of bulk graphene monolayers beyond the Dirac Hamiltonian with linear dispersion. We consider an effective Wannier-like tight-binding model obtained from ab initio calculations, that includes long-range electronic hopping integral terms. We employ the Haydock-Heine-Kelly recursive method to numerically compute the Landau level spectrum of bulk graphene in the quantum Hall regime and demonstrate that this method is both accurate and computationally much faster than the standard numerical approaches used for this kind of study. The Landau level energies are also obtained analytically for an effective Hamiltonian that accounts for up to third nearest neighbor hopping processes. We find an excellent agreement between both approaches. We also study the effect of disorder on the electronic spectrum. Our analysis helps to elucidate the discrepancy between theory and experiment for the high-energy Landau levels energies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源