论文标题

部分可观测时空混沌系统的无模型预测

Single Image Super-Resolution Based on Capsule Neural Networks

论文作者

de Araújo, George Corrêa, Pedrini, Helio

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Single image super-resolution (SISR) is the process of obtaining one high-resolution version of a low-resolution image by increasing the number of pixels per unit area. This method has been actively investigated by the research community, due to the wide variety of real-world problems where it can be applied, from aerial and satellite imaging to compressed image and video enhancement. Despite the improvements achieved by deep learning in the field, the vast majority of the used networks are based on traditional convolutions, with the solutions focusing on going deeper and/or wider, and innovations coming from jointly employing successful concepts from other fields. In this work, we decided to step up from the traditional convolutions and adopt the concept of capsules. Since their overwhelming results both in image classification and segmentation problems, we question how suitable they are for SISR. We also verify that different solutions share most of their configurations, and argue that this trend leads to fewer explorations of network varieties. During our experiments, we check various strategies to improve results, ranging from new and different loss functions to changes in the capsule layers. Our network achieved good results with fewer convolutional-based layers, showing that capsules might be a concept worth applying in the image super-resolution problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源