论文标题

CONCFINQA:在对话融资问题中探索数值推理链

ConvFinQA: Exploring the Chain of Numerical Reasoning in Conversational Finance Question Answering

论文作者

Chen, Zhiyu, Li, Shiyang, Smiley, Charese, Ma, Zhiqiang, Shah, Sameena, Wang, William Yang

论文摘要

随着大型预训练语言模型的最新进展,研究人员已经在NLP任务中实现了创纪录的表演,主要集中在语言模式匹配上。社区正在经历挑战从如何建模语言转变为模仿人类等复杂的推理能力。在这项工作中,我们研究了涉及现实世界中复杂数值推理的财务应用领域。我们提出了一个新的大规模数据集Convinqa,旨在研究会话问题回答中的数值推理链。我们的数据集在建模现实世界对话中的长距离,复杂的数值推理路径方面构成了巨大挑战。我们通过神经符号方法和基于促进的方法进行全面的实验和分析,以洞悉这两个部门的推理机制。我们认为,我们的新数据集应该是推动对现实世界中复杂的推理任务的探索作为下一个研究重点的宝贵资源。我们的数据集和代码可在https://github.com/czyssrs/convfinqa上公开获取。

With the recent advance in large pre-trained language models, researchers have achieved record performances in NLP tasks that mostly focus on language pattern matching. The community is experiencing the shift of the challenge from how to model language to the imitation of complex reasoning abilities like human beings. In this work, we investigate the application domain of finance that involves real-world, complex numerical reasoning. We propose a new large-scale dataset, ConvFinQA, aiming to study the chain of numerical reasoning in conversational question answering. Our dataset poses great challenge in modeling long-range, complex numerical reasoning paths in real-world conversations. We conduct comprehensive experiments and analyses with both the neural symbolic methods and the prompting-based methods, to provide insights into the reasoning mechanisms of these two divisions. We believe our new dataset should serve as a valuable resource to push forward the exploration of real-world, complex reasoning tasks as the next research focus. Our dataset and code is publicly available at https://github.com/czyssrs/ConvFinQA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源