论文标题
迈向过度参数的直接拟合视觉感知模型
Toward an Over-parameterized Direct-Fit Model of Visual Perception
论文作者
论文摘要
在本文中,我们重新审视了简单和复杂细胞对视觉感知的过度参数化和直接拟合模型的计算建模问题。与常规智慧不同,我们强调了简单和复杂细胞之间平行和顺序结合机制的差异。将它们抽象成太空分配和组成的新建议是我们新的等级结构的基础。我们的构造可以解释为基于产品拓扑的现有K-d树的概括,使其适合在高维空间中的蛮力直接拟合。构造模型已应用于神经科学和心理学的几个经典实验。我们提供了对构建视觉模型的反对 - PARPARSE编码解释,并展示了它如何导致动态编程(DP)类似于近似近似近的搜索,基于$ \ ell _ {\ infty} $ - 优化。我们还简要讨论了基于不对称(解码器更重要)的自动编码器和尖峰神经网络(SNN)的两个可能的实现。
In this paper, we revisit the problem of computational modeling of simple and complex cells for an over-parameterized and direct-fit model of visual perception. Unlike conventional wisdom, we highlight the difference in parallel and sequential binding mechanisms between simple and complex cells. A new proposal for abstracting them into space partitioning and composition is developed as the foundation of our new hierarchical construction. Our construction can be interpreted as a product topology-based generalization of the existing k-d tree, making it suitable for brute-force direct-fit in a high-dimensional space. The constructed model has been applied to several classical experiments in neuroscience and psychology. We provide an anti-sparse coding interpretation of the constructed vision model and show how it leads to a dynamic programming (DP)-like approximate nearest-neighbor search based on $\ell_{\infty}$-optimization. We also briefly discuss two possible implementations based on asymmetrical (decoder matters more) auto-encoder and spiking neural networks (SNN), respectively.