论文标题

部分可观测时空混沌系统的无模型预测

MultiStyleGAN: Multiple One-shot Image Stylizations using a Single GAN

论文作者

Shah, Viraj, Sarkar, Ayush, Anitha, Sudharsan Krishnakumar, Lazebnik, Svetlana

论文摘要

图像样式旨在将参考样式应用于任意输入图像。一个常见的方案是单发风格,其中只有一个示例可用于每种参考样式。最近的一声风格化方法,例如Jojogan微调单个样式参考图像上的预训练的stylegan2发电机。但是,如果不针对每种样式分别微调新模型,就无法生成多个样式。在这项工作中,我们提出了一种多级方法,该方法能够通过微调单个发电机来一次产生多个不同的样式。我们方法的关键组成部分是一个可学习的转换模块,称为样式转换网络。它将潜在代码作为输入,并将线性映射学习到潜在空间的不同区域,以为每种样式生成不同的代码,从而产生多层空间。我们的模型固有地减轻了过度拟合,因为它接受了多种样式的培训,从而提高了样式的质量。我们的方法可以一次学习$ 120 $的图像样式,将$ 8 \ times $ to $ 60 \ $ $ $ $ $ $ $ $ \ $ 60 \ $ $。我们通过用户研究和定量结果来支持我们的结果,这些结果表明对现有方法的有意义改进。

Image stylization aims at applying a reference style to arbitrary input images. A common scenario is one-shot stylization, where only one example is available for each reference style. Recent approaches for one-shot stylization such as JoJoGAN fine-tune a pre-trained StyleGAN2 generator on a single style reference image. However, such methods cannot generate multiple stylizations without fine-tuning a new model for each style separately. In this work, we present a MultiStyleGAN method that is capable of producing multiple different stylizations at once by fine-tuning a single generator. The key component of our method is a learnable transformation module called Style Transformation Network. It takes latent codes as input, and learns linear mappings to different regions of the latent space to produce distinct codes for each style, resulting in a multistyle space. Our model inherently mitigates overfitting since it is trained on multiple styles, hence improving the quality of stylizations. Our method can learn upwards of $120$ image stylizations at once, bringing $8\times$ to $60\times$ improvement in training time over recent competing methods. We support our results through user studies and quantitative results that indicate meaningful improvements over existing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源