论文标题
用典型特征提高分发检测
Boosting Out-of-distribution Detection with Typical Features
论文作者
论文摘要
分布(OOD)检测是确保在现实情况下深处神经网络的可靠性和安全性的关键任务。与以前的大多数OOD检测方法不同,该方法着重于设计OOD得分或引入不同的离群示例以重新验证该模型,我们从典型性的角度研究了OOD检测中的障碍因子,并将其深层模型的高概率区域视为特征的典型集合。我们建议将功能纠正到其典型集合中,并使用典型特征计算出OOD得分,以实现可靠的不确定性估计。特征纠正可以作为具有各种OOD分数的{插件}模块进行。我们评估了我们在常用基准(CIFAR)和具有较大标签空间(Imagenet)的更具挑战性的高分辨率基准(Imagenet)上的优势。值得注意的是,我们的方法在Imagenet基准中的平均FPR95中,最高的最新方法的最高为5.11 $ \%$。
Out-of-distribution (OOD) detection is a critical task for ensuring the reliability and safety of deep neural networks in real-world scenarios. Different from most previous OOD detection methods that focus on designing OOD scores or introducing diverse outlier examples to retrain the model, we delve into the obstacle factors in OOD detection from the perspective of typicality and regard the feature's high-probability region of the deep model as the feature's typical set. We propose to rectify the feature into its typical set and calculate the OOD score with the typical features to achieve reliable uncertainty estimation. The feature rectification can be conducted as a {plug-and-play} module with various OOD scores. We evaluate the superiority of our method on both the commonly used benchmark (CIFAR) and the more challenging high-resolution benchmark with large label space (ImageNet). Notably, our approach outperforms state-of-the-art methods by up to 5.11$\%$ in the average FPR95 on the ImageNet benchmark.