论文标题

多动态学习(HAL)用于数据驱动的原子间电位

Hyperactive Learning (HAL) for Data-Driven Interatomic Potentials

论文作者

van der Oord, Cas, Sachs, Matthias, Kovács, Dávid Péter, Ortner, Christoph, Csányi, Gábor

论文摘要

数据驱动的原子质电位已成为{\ it Inibion​​}势能表面的强大类型替代模型,这些模型能够以实验精度可靠地预测宏观特性。在产生准确且可转移的电位时,最耗时,最重要的任务是生成培训集,这仍然需要重要的专家用户输入。为了加速此过程,这项工作介绍了\ text {\ it Mallivative Learning}(HAL),这是一个框架,用于制定专门针对培训数据库生成任务的加速采样算法。关键思想是从一个有力动机的采样器(例如分子动力学)开始,并添加一个有偏见的术语,该术语将系统驱动到高度不确定性,从而驱动了看不见的训练配置。在此框架的基础上,将介绍用于构建合金和聚合物培训数据库的一般协议。对于合金,ALSI10的ACE电位是通过拟合最小HAL生成的数据库而创建的,该数据库包含88个配置(每个32个原子),快速评估时间<100微秒/Atom/CPU核。这些电势被证明可以以极好的精度预测熔化温度。对于聚合物,使用ACE构建HAL数据库,能够确定由200个单体单元形成的长聚乙二醇(PEG)聚合物的密度,仅通过将其尺寸拟合到2至32范围内,具有实验精度。

Data-driven interatomic potentials have emerged as a powerful class of surrogate models for {\it ab initio} potential energy surfaces that are able to reliably predict macroscopic properties with experimental accuracy. In generating accurate and transferable potentials the most time-consuming and arguably most important task is generating the training set, which still requires significant expert user input. To accelerate this process, this work presents \text{\it hyperactive learning} (HAL), a framework for formulating an accelerated sampling algorithm specifically for the task of training database generation. The key idea is to start from a physically motivated sampler (e.g., molecular dynamics) and add a biasing term that drives the system towards high uncertainty and thus to unseen training configurations. Building on this framework, general protocols for building training databases for alloys and polymers leveraging the HAL framework will be presented. For alloys, ACE potentials for AlSi10 are created by fitting to a minimal HAL-generated database containing 88 configurations (32 atoms each) with fast evaluation times of <100 microsecond/atom/cpu-core. These potentials are demonstrated to predict the melting temperature with excellent accuracy. For polymers, a HAL database is built using ACE, able to determine the density of a long polyethylene glycol (PEG) polymer formed of 200 monomer units with experimental accuracy by only fitting to small isolated PEG polymers with sizes ranging from 2 to 32.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源