论文标题

通过3D边界约束的深神经网络改善了腹部多器官分割

Improved Abdominal Multi-Organ Segmentation via 3D Boundary-Constrained Deep Neural Networks

论文作者

Irshad, Samra, Gomes, Douglas P. S., Kim, Seong Tae

论文摘要

对临床获得的CT扫描对腹部区域的定量评估需要同时分割腹部器官。由于高性能计算资源的可用性,基于深度学习的方法为3D腹部CT扫描的细分带来了最先进的性能。但是,具有模糊边界器官的复杂表征阻止了深度学习方法准确地分割了这些解剖器官。具体而言,由于器官边界的边界上的体素更容易受到错误预测的影响,这是由于高强度的器官间边界强度。本文通过利用器官结合预测作为互补任务来研究改善现有3D编码器网络的腹部图像分割性能的可能性。为了解决腹部多器官分割的问题,我们训练3D编码器 - 码头网络以同时通过多任务学习在CT扫描中分段腹部器官及其相应的边界。该网络是使用损失函数端到端训练的,该损失函数结合了两个特定于任务的损失,即完整的器官分割损失和边界预测损失。我们根据统一的多任务框架中的两个任务之间共享的权重程度探索两个不同的网络拓扑。为了评估互补边界预测任务在改善腹部多器官分割方面的利用,我们使用三个最先进的编码器网络:3D UNET,3D UNET ++和3D注意力网。在两个公开可用的腹部CT数据集上评估了利用器官边界信息进行腹部多器官分割的有效性。在胰腺-CT和BTCV数据集的平均骰子得分中,观察到最大的相对提高3.5%和3.6%。

Quantitative assessment of the abdominal region from clinically acquired CT scans requires the simultaneous segmentation of abdominal organs. Thanks to the availability of high-performance computational resources, deep learning-based methods have resulted in state-of-the-art performance for the segmentation of 3D abdominal CT scans. However, the complex characterization of organs with fuzzy boundaries prevents the deep learning methods from accurately segmenting these anatomical organs. Specifically, the voxels on the boundary of organs are more vulnerable to misprediction due to the highly-varying intensity of inter-organ boundaries. This paper investigates the possibility of improving the abdominal image segmentation performance of the existing 3D encoder-decoder networks by leveraging organ-boundary prediction as a complementary task. To address the problem of abdominal multi-organ segmentation, we train the 3D encoder-decoder network to simultaneously segment the abdominal organs and their corresponding boundaries in CT scans via multi-task learning. The network is trained end-to-end using a loss function that combines two task-specific losses, i.e., complete organ segmentation loss and boundary prediction loss. We explore two different network topologies based on the extent of weights shared between the two tasks within a unified multi-task framework. To evaluate the utilization of complementary boundary prediction task in improving the abdominal multi-organ segmentation, we use three state-of-the-art encoder-decoder networks: 3D UNet, 3D UNet++, and 3D Attention-UNet. The effectiveness of utilizing the organs' boundary information for abdominal multi-organ segmentation is evaluated on two publically available abdominal CT datasets. A maximum relative improvement of 3.5% and 3.6% is observed in Mean Dice Score for Pancreas-CT and BTCV datasets, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源