论文标题
学习用潜在文字提示分解视觉特征
Learning to Decompose Visual Features with Latent Textual Prompts
论文作者
论文摘要
训练前视觉模型(如剪辑)的最新进展在学习可转移的视觉表示方面表现出巨大的潜力。但是,对于下游推断,类似夹子的模型遭受了1)在基于检索的推断期间的文本描述不准确的情况下,精度和鲁棒性降低了(零摄像协议的挑战);或2)打破良好的视觉路线(线性探测的挑战)。为了解决它们,我们提出了分解的功能提示(DEFO)。 DeFo在保持视觉语言双模型架构的同时,利用了灵活数量的可学习嵌入作为文本输入,该架构使模型能够借助功能级文本文本提示来学习分解的视觉功能。我们进一步使用额外的线性层执行分类,从而允许语言输入的可扩展大小。我们的经验研究表明,Defo在改善视觉模型方面的重要性。例如,Defo在Imainet上获得了73.2%的测试精度,而Resnet-50骨干链,而无需调整视觉和语言编码器的任何预审预告额的重量,以优于15.0%的零距离零片,并且超过了先进的视觉及时及时的迅速调谐方法,以7.6%的速度调谐。
Recent advances in pre-training vision-language models like CLIP have shown great potential in learning transferable visual representations. Nonetheless, for downstream inference, CLIP-like models suffer from either 1) degraded accuracy and robustness in the case of inaccurate text descriptions during retrieval-based inference (the challenge for zero-shot protocol); or 2) breaking the well-established vision-language alignment (the challenge for linear probing). To address them, we propose Decomposed Feature Prompting (DeFo). DeFo leverages a flexible number of learnable embeddings as textual input while maintaining the vision-language dual-model architecture, which enables the model to learn decomposed visual features with the help of feature-level textual prompts. We further use an additional linear layer to perform classification, allowing a scalable size of language inputs. Our empirical study shows DeFo's significance in improving the vision-language models. For example, DeFo obtains 73.2% test accuracy on ImageNet with a ResNet-50 backbone without tuning any pretrained weights of both the vision and language encoder, outperforming zero-shot CLIP by a large margin of 15.0%, and outperforming state-of-the-art vision-language prompt tuning method by 7.6%.