论文标题

在155年的德国议会辩论中,妇女和移民对妇女和移民的团结的良好发现

Fine-Grained Detection of Solidarity for Women and Migrants in 155 Years of German Parliamentary Debates

论文作者

Kostikova, Aida, Paassen, Benjamin, Beese, Dominik, Pütz, Ole, Wiedemann, Gregor, Eger, Steffen

论文摘要

团结是了解社会中社会关系的关键概念。在本文中,我们探索了精细颗粒的团结框架,以研究1867年至2022年之间德国议会辩论中对妇女和移民的团结。我们使用2,864个手动注释的文本片段(成本超过18k欧元),我们评估了Llama 3,GPT-3.5,GPT-3.5和GPT-4。我们发现GPT-4优于其他LLM,接近人类注释质量。使用GPT-4,我们在155年内自动注释了超过18k的实例(成本约为500欧元),发现对移民的团结超过反降低性,但这种频率和团结类型会随着时间而变化。最重要的是,基于群体的(反)团结的概念淡出了富有同情心的团结,重点关注移民群体的脆弱性以及基于交流的反降解性,重点是缺乏(经济)贡献。我们的研究强调了历史事件,社会经济需求以及政治意识形态在塑造移民话语和社会凝聚力方面的相互作用。我们还表明,强大的LLM,如果仔细提示,可以作为艰苦社会科学任务的人类注释具有成本效益的替代方法。

Solidarity is a crucial concept to understand social relations in societies. In this paper, we explore fine-grained solidarity frames to study solidarity towards women and migrants in German parliamentary debates between 1867 and 2022. Using 2,864 manually annotated text snippets (with a cost exceeding 18k Euro), we evaluate large language models (LLMs) like Llama 3, GPT-3.5, and GPT-4. We find that GPT-4 outperforms other LLMs, approaching human annotation quality. Using GPT-4, we automatically annotate more than 18k further instances (with a cost of around 500 Euro) across 155 years and find that solidarity with migrants outweighs anti-solidarity but that frequencies and solidarity types shift over time. Most importantly, group-based notions of (anti-)solidarity fade in favor of compassionate solidarity, focusing on the vulnerability of migrant groups, and exchange-based anti-solidarity, focusing on the lack of (economic) contribution. Our study highlights the interplay of historical events, socio-economic needs, and political ideologies in shaping migration discourse and social cohesion. We also show that powerful LLMs, if carefully prompted, can be cost-effective alternatives to human annotation for hard social scientific tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源