论文标题

shopsy的视觉上类似产品检索

Visually Similar Products Retrieval for Shopsy

论文作者

Nadkarni, Prajit, Dasararaju, Narendra Varma

论文摘要

视觉搜索在转销商商务方面有很大的帮助,特别是对于对区域语言有亲和力的非科技用户而言。它使转售商可以准确地找到他们寻求的产品,这与推荐头品牌产品的文本搜索不同。电子商务中可用的产品属性具有巨大的潜力,可以在数据点之间捕获细菌关系时建立更好的视觉搜索系统。在这项工作中,我们使用多任务学习方法设计了一个视觉搜索系统,用于转售商商务。我们还强调并应对经销商贸易中面临的图像压缩,裁剪,图像上的涂鸦等挑战。我们的模型由三个不同的任务组成:属性分类,三重态排名和变异自动编码器(VAE)。掩蔽技术用于设计属性分类。接下来,我们引入了一种离线三重态挖掘技术,该技术利用来自多个属性的信息来捕获数据中的相对顺序。与传统的三重态挖掘基线相比,该技术的性能更好,该基线使用了单标签/属性信息。我们还分别比较了我们统一的多任务模型在每个任务上分别比较和报告增量增益。使用印度最大的电子商务公司Flipkart生活方式业务单位的产品图像的内部数据集证明了我们方法的有效性。为了有效地检索生产中的图像,我们使用大约最近的邻居(ANN)索引。最后,我们重点介绍了生产环境的限制,并介绍了为选择合适的ANN指数进行的设计选择和实验。

Visual search is of great assistance in reseller commerce, especially for non-tech savvy users with affinity towards regional languages. It allows resellers to accurately locate the products that they seek, unlike textual search which recommends products from head brands. Product attributes available in e-commerce have a great potential for building better visual search systems as they capture fine grained relations between data points. In this work, we design a visual search system for reseller commerce using a multi-task learning approach. We also highlight and address the challenges like image compression, cropping, scribbling on the image, etc, faced in reseller commerce. Our model consists of three different tasks: attribute classification, triplet ranking and variational autoencoder (VAE). Masking technique is used for designing the attribute classification. Next, we introduce an offline triplet mining technique which utilizes information from multiple attributes to capture relative order within the data. This technique displays a better performance compared to the traditional triplet mining baseline, which uses single label/attribute information. We also compare and report incremental gain achieved by our unified multi-task model over each individual task separately. The effectiveness of our method is demonstrated using the in-house dataset of product images from the Lifestyle business-unit of Flipkart, India's largest e-commerce company. To efficiently retrieve the images in production, we use the Approximate Nearest Neighbor (ANN) index. Finally, we highlight our production environment constraints and present the design choices and experiments conducted to select a suitable ANN index.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源