论文标题

在梯度采样方法中使用二阶信息进行非平滑优化

Using second-order information in gradient sampling methods for nonsmooth optimization

论文作者

Gebken, Bennet

论文摘要

在本文中,我们介绍了一个新颖的概念,以供受到Goldstein Eps-Subdferention启发的非平滑函数的二阶信息。它包括在给定点附近的EPS球中所有现有二阶泰勒膨胀的系数。基于这个概念,我们将目标模型定义为这些泰勒膨胀的最大值,并在实践中得出了一个采样方案。该模型的最小化诱导了一种简单的下降方法,为此,我们显示了物镜为凸或最大型的情况。虽然我们没有证明这种方法的收敛速度,但数值实验表明,相对于目标呼叫的数量,超线性行为。

In this article, we introduce a novel concept for second-order information of a nonsmooth function inspired by the Goldstein eps-subdifferential. It comprises the coefficients of all existing second-order Taylor expansions in an eps-ball around a given point. Based on this concept, we define a model of the objective as the maximum of these Taylor expansions, and derive a sampling scheme for its approximation in practice. Minimization of this model induces a simple descent method, for which we show convergence for the case where the objective is convex or of max-type. While we do not prove any rate of convergence of this method, numerical experiments suggest superlinear behavior with respect to the number of oracle calls of the objective.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源