论文标题
Leibniz三重系统上相对Rota-Baxter操作员的变形
Deformations of relative Rota-Baxter operators on Leibniz Triple Systems
论文作者
论文摘要
在本文中,我们介绍了Leibniz三重系统上相对Rota-Baxter操作员的同时理论。我们使用的共同体方法研究相对旋转式运算符的线性和形式变形。特别是,相对rota-baxter操作员的订单$ n $变形的正式变形和扩展性也以同时理论为特征。我们还考虑了相对rota-baxter操作员在Leibniz代数和相关的Leibniz三重系统上的关系。
In this paper, we introduce the cohomology theory of relative Rota-Baxter operators on Leibniz triple systems. We use the cohomological approach to study linear and formal deformations of relative Rota-Baxter operators. In particular, formal deformations and extendibility of order $n$ deformations of a relative Rota-Baxter operators are also characterized in terms of the cohomology theory. We also consider the relationship between cohomology of relative Rota-Baxter operators on Leibniz algebras and associated Leibniz triple systems.