论文标题
通过共形预测来校准以几次射击解调的AI模型
Calibrating AI Models for Few-Shot Demodulation via Conformal Prediction
论文作者
论文摘要
AI工具对于解决通信系统设计中的模型缺陷很有用。但是,常规的基于学习的AI算法产生的校准决定较差,无法量化其输出的不确定性。虽然贝叶斯学习可以通过捕获有限的数据可用性引起的认知不确定性来增强校准,但正式校准只有在对地面,未知,数据生成机制的强烈假设下才能保证。我们建议利用保形预测框架获得数据驱动的集合预测,其校准属性符合数据分布,无论数据分布如何。具体而言,我们研究了在存在难以建模的非线性(例如硬件瑕疵)的情况下的基带解调器的设计,并根据保形预测提出了基于集合的解调剂。数值结果证实了所提出的解调器的理论有效性,并将见解带入其平均预测设置尺寸效率。
AI tools can be useful to address model deficits in the design of communication systems. However, conventional learning-based AI algorithms yield poorly calibrated decisions, unabling to quantify their outputs uncertainty. While Bayesian learning can enhance calibration by capturing epistemic uncertainty caused by limited data availability, formal calibration guarantees only hold under strong assumptions about the ground-truth, unknown, data generation mechanism. We propose to leverage the conformal prediction framework to obtain data-driven set predictions whose calibration properties hold irrespective of the data distribution. Specifically, we investigate the design of baseband demodulators in the presence of hard-to-model nonlinearities such as hardware imperfections, and propose set-based demodulators based on conformal prediction. Numerical results confirm the theoretical validity of the proposed demodulators, and bring insights into their average prediction set size efficiency.