论文标题

与类别偏移的多任务分类的关联图表学习

Association Graph Learning for Multi-Task Classification with Category Shifts

论文作者

Shen, Jiayi, Xiao, Zehao, Zhen, Xiantong, Snoek, Cees G. M., Worring, Marcel

论文摘要

在本文中,我们专注于多任务分类,其中相关的分类任务共享相同的标签空间并同时学习。特别是,我们解决了一个新环境,该环境比文献中目前所说的更现实,在文献中,类别从培训转变为测试数据。因此,单个任务不包含测试集中类别的完整培训数据。为了概括此类测试数据,对于各个任务来说,利用相关任务的知识至关重要。为此,我们建议学习一个关联图,以在缺少班级的任务之间转移知识。我们使用代表任务,类和实例的节点构建关联图,并编码边缘中节点之间的关系,以指导其相互知识转移。通过在关联图上传递的消息,我们的模型增强了每个实例的分类信息,从而使其更具歧视性。为了避免图表中任务和类节点之间的虚假相关性,我们引入了一个分配熵最大化,鼓励每个类节点平衡其边缘权重。这使所有任务都可以从相关任务中充分利用分类信息。对三个一般基准和针对皮肤病变分类的医学数据集进行了广泛的评估表明,我们的方法的性能始终比代表性基线更好。

In this paper, we focus on multi-task classification, where related classification tasks share the same label space and are learned simultaneously. In particular, we tackle a new setting, which is more realistic than currently addressed in the literature, where categories shift from training to test data. Hence, individual tasks do not contain complete training data for the categories in the test set. To generalize to such test data, it is crucial for individual tasks to leverage knowledge from related tasks. To this end, we propose learning an association graph to transfer knowledge among tasks for missing classes. We construct the association graph with nodes representing tasks, classes and instances, and encode the relationships among the nodes in the edges to guide their mutual knowledge transfer. By message passing on the association graph, our model enhances the categorical information of each instance, making it more discriminative. To avoid spurious correlations between task and class nodes in the graph, we introduce an assignment entropy maximization that encourages each class node to balance its edge weights. This enables all tasks to fully utilize the categorical information from related tasks. An extensive evaluation on three general benchmarks and a medical dataset for skin lesion classification reveals that our method consistently performs better than representative baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源