论文标题

使用神经网络拒绝贝加尔-GVD数据中的噪声

Rejecting noise in Baikal-GVD data with neural networks

论文作者

Kharuk, I., Rubtsov, G., Safronov, G.

论文摘要

Baikal-GVD是一个大型($ \ sim $ 1 km $^3 $)的水下中微子望远镜,安装在贝加尔湖的新鲜水域中。深湖水环境被背景光所弥漫,Baikal-GVD的光传感器可以检测到。我们引入了一个神经网络,以有效地将这些噪声命中与信号的命中分离,这是由于相对论颗粒通过检测器的传播而引起的。该模型具有类似U-NET的架构,并采用事件的时间(因果)结构。神经网络的指标可达到99 \%信号纯度(精度)和96 \%的生存效率(回忆),上面是蒙特卡罗模拟数据集。我们将开发的方法与算法方法进行了比较,以拒绝噪声并讨论神经网络(包括基于图基网络)的其他可能的架构。

Baikal-GVD is a large ($\sim$1 km$^3$) underwater neutrino telescope installed in the fresh waters of Lake Baikal. The deep lake water environment is pervaded by background light, which is detectable by Baikal-GVD's photosensors. We introduce a neural network for an efficient separation of these noise hits from the signal ones, stemming from the propagation of relativistic particles through the detector. The model has a U-net-like architecture and employs temporal (causal) structure of events. The neural network's metrics reach up to 99\% signal purity (precision) and 96\% survival efficiency (recall) on Monte-Carlo simulated dataset. We compare the developed method with the algorithmic approach to rejecting the noise and discuss other possible architectures of neural networks, including graph-based ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源