论文标题

不对称分布的无中心峰度

Centre-free kurtosis orderings for asymmetric distributions

论文作者

Eberl, Andreas, Klar, Bernhard

论文摘要

峰度的概念用于描述和比较多种应用中的理论和经验分布。在这方面,它通常应用于不对称分布。但是,没有严格的数学基础来确定不对称分布的峰度以及正确测量其所需的含义。文献中的所有相应提案中心都围绕某种中心位置的峰度进行了比较。由于这要么忽略了关键信息,要么是过于限制的,因此我们重新审视了文献中几乎没有受到任何关注的规范方法。它揭示了由于峰度和偏斜性作为潜在问题的内在纠缠而导致的峰度秩序的不转变性。通过将注意力限制在相等偏度的分布集中,这可以避免这种情况,而所提出的峰度有序被证明是及物的。此外,我们引入了一个功能,该功能保留了该命令以进行任意不对称分布。随着应用,我们检查了威布尔和辛·阿森的分布的家族,并表明后一个家族表现出偏斜的不变性峰度行为。

The concept of kurtosis is used to describe and compare theoretical and empirical distributions in a multitude of applications. In this connection, it is commonly applied to asymmetric distributions. However, there is no rigorous mathematical foundation establishing what is meant by kurtosis of an asymmetric distribution and what is required to measure it properly. All corresponding proposals in the literature centre the comparison with respect to kurtosis around some measure of central location. Since this either disregards critical amounts of information or is too restrictive, we instead revisit a canonical approach that has barely received any attention in the literature. It reveals the non-transitivity of kurtosis orderings due to an intrinsic entanglement of kurtosis and skewness as the underlying problem. This is circumvented by restricting attention to sets of distributions with equal skewness, on which the proposed kurtosis ordering is shown to be transitive. Moreover, we introduce a functional that preserves this order for arbitrary asymmetric distributions. As application, we examine the families of Weibull and sinh-arsinh distributions and show that the latter family exhibits a skewness-invariant kurtosis behaviour.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源