论文标题

Pfister的Azumaya代数的本地全球原则

Pfister's local-global principle for Azumaya algebras with involution

论文作者

Astier, Vincent, Unger, Thomas

论文摘要

我们证明了Pfister在Azumaya代数上的Hermitian形式的局部全球原则,而半落地圈则尤其表明,非词性Hermitian形式的Witt Group是$ 2 $ 2 $ - 主要的扭转。我们的证明依赖于希尔维斯特的惯性定律的隐居版本,该定律是从对Garrel广泛研究的Hermitian形式配对之间的联系,Hermitian形式的签名和积极的半芬太尼二次形式进行的。

We prove Pfister's local-global principle for hermitian forms over Azumaya algebras with involution over semilocal rings, and show in particular that the Witt group of nonsingular hermitian forms is $2$-primary torsion. Our proof relies on a hermitian version of Sylvester's law of inertia, which is obtained from an investigation of the connections between a pairing of hermitian forms extensively studied by Garrel, signatures of hermitian forms, and positive semidefinite quadratic forms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源