论文标题

耦合的杂交不连续的盖尔金和边界积分方法,用于分析电磁散射

A Coupled Hybridizable Discontinuous Galerkin and Boundary Integral Method for Analyzing Electromagnetic Scattering

论文作者

Zhao, Ran, Dong, Ming, Chen, Liang, Hu, Jun, Bagci, Hakan

论文摘要

提出了一种偶联的杂交不连续的Galerkin(HDG)和边界积分(BI)方法,以有效地分析来自不均匀/复合物体的电磁散射。 HDG和BI方程之间的耦合使用在等效电流和HDG的全局未知的数值通量中实现。这种方法在离散化后会产生稀疏的耦合矩阵。包含BI方程可确保执行辐射条件的唯一误差是离散化。但是,该方程式的离散化产生了密集的矩阵,该矩阵禁止在整个耦合系统上使用直接矩阵求解器,就像传统的HDG方案一样。为了克服这种瓶颈,开发了一种“混合”方法。该方法使用迭代方案来求解整体耦合系统,但是在矩阵的矩阵乘法子例程中,HDG矩阵的倒数有效地考虑了使用稀疏的直接矩阵求解器。同一子例程还使用多级快速多极算法来加速使用密集的BI矩阵的猜测乘法。数值结果证明了所提出的HDG-BI求解器的准确性,效率和适用性。

A coupled hybridizable discontinuous Galerkin (HDG) and boundary integral (BI) method is proposed to efficiently analyze electromagnetic scattering from inhomogeneous/composite objects. The coupling between the HDG and the BI equations is realized using the numerical flux operating on the equivalent current and the global unknown of the HDG. This approach yields sparse coupling matrices upon discretization. Inclusion of the BI equation ensures that the only error in enforcing the radiation conditions is the discretization. However, the discretization of this equation yields a dense matrix, which prohibits the use of a direct matrix solver on the overall coupled system as often done with traditional HDG schemes. To overcome this bottleneck, a "hybrid" method is developed. This method uses an iterative scheme to solve the overall coupled system but within the matrix-vector multiplication subroutine of the iterations, the inverse of the HDG matrix is efficiently accounted for using a sparse direct matrix solver. The same subroutine also uses the multilevel fast multipole algorithm to accelerate the multiplication of the guess vector with the dense BI matrix. The numerical results demonstrate the accuracy, the efficiency, and the applicability of the proposed HDG-BI solver.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源