论文标题
一种用于评估化学时间尺度的计算高效,可靠的方法论,具有详细的化学动力学
A Computationally Efficient, Robust Methodology for Evaluating Chemical Timescales with Detailed Chemical Kinetics
论文作者
论文摘要
动荡的反应流发生在各种工程应用中,例如化学反应器和发电设备(燃气轮机和内燃机)。湍流反应流的特征是两个主要的时标,即流动时间标准和化学(或反应)时间尺度。了解流动和反应动力学的相对时间尺度起着重要作用,不仅在精确模拟这些设备所需的模型中,而且在其设计/优化研究中所需的模型。化学时标有几个定义,这些定义很大程度上可以归类为代数或基于特征值的方法。计算复杂性(因此成本)取决于评估化学时标和化学反应机制大小的方法。评估反应时间量表的方法的计算成本和鲁棒性是使用详细的化学机制在大规模多维模拟中的重要考虑因素。在这项工作中,我们提出了一种基于代数方法评估化学时间尺度的计算效率和健壮方法。对于一系列燃油空气混合物,压力和温度条件,提出了这种新方法与其他传统方法的比较。此外,在与发电设备相关的条件下,还提出了化学时标的用于燃油空气混合物。所提出的方法显示出与基于特征值的方法相同的时间特征,而所研究的所有1个酶没有额外的计算成本。因此,所提出的方法具有与需要计算Damkohler数量的多维湍流流量模拟的潜力。
Turbulent reacting flows occur in a variety of engineering applications such as chemical reactors and power generating equipment (gas turbines and internal combustion engines). Turbulent reacting flows are characterized by two main timescales, namely, flow timescales and chemical (or reaction) timescales. Understanding the relative timescales of flow and reaction kinetics plays an important role, not only in the choice of models required for the accurate simulation of these devices but also their design/optimization studies. There are several definitions of chemical timescales, which can largely be classified as algebraic or eigenvalue-based methods. The computational complexity (and hence cost) depends on the method of evaluation of the chemical timescales and size of the chemical reaction mechanism. The computational cost and robustness of the methodology of evaluating the reaction times scales is an important consideration in large-scale multi-dimensional simulations using detailed chemical mechanisms. In this work, we present a computational efficient and robust methodology to evaluate chemical timescales based on the algebraic method. Comparison of this novel methodology with other traditional methods is presented for a range of fuel-air mixtures, pressures and temperatures conditions. Additionally, chemical timescales are also presented for fuel-air mixtures at conditions of relevance to power generating equipment. The proposed method showed the same temporal characteristics as the eigenvalue-based methods with no additional computational cost for all the 1cases studied. The proposed method thus has the potential for use with multidimensional turbulent reacting flow simulations which require the computation of the Damkohler number.