论文标题

部分可观测时空混沌系统的无模型预测

The Green ring of a family of copointed Hopf algebras

论文作者

Vay, Cristian

论文摘要

Fomin-Kirillov代数$ \ MATHCAL {FK} _3 $在对称组$ \ MATHBB {S} _3 $上的代数上的共同提升是由Andruskiewitsch和作者分类的。我们在这里证明,与通用参数相关的那些相当于众所周知的Hopf代数的非简单块:Taft代数的Drinfeld双打和小量子组$ u_ {q}(Q}(\ Mathfrak {slfrak {sl}} _2)_2)$。这些模块上的不可分解的模块由Chen,Chari--premet和Suter独立地分类。因此,我们在$ \ Mathcal {fk} _3 $的通用升降机上获得了insocompososable模块。我们将它们之间的张量产品分解为不可分解的模块的直接总和。然后,我们推断出发电机的演讲和绿环的关系。

The copointed liftings of the Fomin-Kirillov algebra $\mathcal{FK}_3$ over the algebra of functions on the symmetric group $\mathbb{S}_3$ were classified by Andruskiewitsch and the author. We demonstrate here that those associated to a generic parameter are Morita equivalent to the non-simple blocks of well-known Hopf algebras: the Drinfeld doubles of the Taft algebras and the small quantum groups $u_{q}(\mathfrak{sl}_2)$. The indecomposable modules over these were classified independently by Chen, Chari--Premet and Suter. Consequently, we obtain the indocomposable modules over the generic liftings of $\mathcal{FK}_3$. We decompose the tensor products between them into the direct sum of indecomposable modules. We then deduce a presentation by generators and relations of the Green ring.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源