论文标题

部分可观测时空混沌系统的无模型预测

Optimal wireless rate and power control in the presence of jammers using reinforcement learning

论文作者

Raji, Fadlullah, Miao, Lei

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Future wireless networks require high throughput and energy efficiency. This paper studies using Reinforcement Learning (RL) to do transmission rate and power control for maximizing a joint reward function consisting of both throughput and energy consumption. We design the system state to include factors that reflect packet queue length, interference from other nodes, quality of the wireless channel, battery status, etc. The reward function is normalized and does not involve unit conversion. It can be used to train three different types of agents: throughput-critical, energy-critical, and throughput and energy balanced. Using the NS-3 network simulation software, we implement and train these agents in an 802.11ac network with the presence of a jammer. We then test the agents with two jamming nodes interfering with the packets received at the receiver. We compare the performance of our RL optimal policies with the popular Minstrel rate adaptation algorithm: our approach can achieve (i) higher throughput when using the throughput-critical reward function; (ii) lower energy consumption when using the energy-critical reward function; and (iii) higher throughput and slightly higher energy when using the throughput and energy balanced reward function. Although our discussion is focused on 802.11ac networks, our method is readily applicable to other types of wireless networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源