论文标题
部分可观测时空混沌系统的无模型预测
A non-interacting Galactic black hole candidate in a binary system with a main-sequence star
论文作者
论文摘要
我们描述了一个太阳邻域(D = 468 PC)二进制系统的发现,该系统具有主序列的日光恒星和大规模的非相互作用的黑洞候选者。可见星的光谱能分布(SED)由单个恒星模型描述。我们从高信号到噪声麦哲伦/麦克谱中得出了恒星参数,将恒星与$ t _ {\ rm eff} = 5972 \ rm k $,$ \ log {g} = 4.54 $和$ m = 0.91 $ \ msun分类为主要序列星。光谱没有显示第二个发光成分的迹象。为了确定二元的光谱轨道,我们在四个月内用自动化的行星发现器,麦哲伦和凯克测量了该系统的径向速度。我们表明,速度数据与\ textit {gaia}天文轨道一致,并为大型黑暗伴侣提供了独立的证据。从我们的光谱数据和天文学的联合拟合度中,我们得出了$ 11.39^{+1.51} _ { - 1.31} $ \ msun的伴侣质量。我们得出的结论是,该二进制系统在一个偏心$(E = 0.46 \ pm 0.02)$,$ 185.4 \ pm 0.1 $ d轨道上携带了一个巨大的黑洞。这些结论与\ cite {elbadry2022disc}无关,后者最近报告了同一系统的发现。与所有可用数据的关节拟合(包括\ cite {elbadry2022disc} s)产生了可比的时期解决方案,但较低的同伴质量为$ 9.32^{+0.22} _ { - 0.21} m _ {\ odot} $。径向速度符合所有可用数据的速度,在任何两个数据集都无法使用的时期中产生一个单峰解决方案。这两个数据集的组合都产生了当前可用的最准确的轨道。
We describe the discovery of a solar neighborhood (d=468 pc) binary system with a main-sequence sunlike star and a massive non-interacting black hole candidate. The spectral energy distribution (SED) of the visible star is described by a single stellar model. We derive stellar parameters from a high signal-to-noise Magellan/MIKE spectrum, classifying the star as a main-sequence star with $T_{\rm eff} = 5972 \rm K$, $\log{g} = 4.54$, and $M = 0.91$ \msun. The spectrum shows no indication of a second luminous component. To determine the spectroscopic orbit of the binary, we measured radial velocities of this system with the Automated Planet Finder, Magellan, and Keck over four months. We show that the velocity data are consistent with the \textit{Gaia} astrometric orbit and provide independent evidence for a massive dark companion. From a combined fit of our spectroscopic data and the astrometry, we derive a companion mass of $11.39^{+1.51}_{-1.31}$\msun. We conclude that this binary system harbors a massive black hole on an eccentric $(e =0.46 \pm 0.02)$, $185.4 \pm 0.1$ d orbit. These conclusions are independent of \cite{ElBadry2022Disc}, who recently reported the discovery of the same system. A joint fit to all available data (including \cite{ElBadry2022Disc}'s) yields a comparable period solution, but a lower companion mass of $9.32^{+0.22}_{-0.21} M_{\odot}$. Radial velocity fits to all available data produce a unimodal solution for the period that is not possible with either data set alone. The combination of both data sets yields the most accurate orbit currently available.