论文标题
相互作用的一维超导体中的分数拓扑
Fractional Topology in Interacting 1D Superconductors
论文作者
论文摘要
我们研究了两个一维(1D)相互作用的超导电线的拓扑阶段,并提出可直接从基态相关函数中测量的拓扑标记。在耦合和互动的存在下,这些数量仍然是强大的工具。我们用密度矩阵重新归一化组表明,在[1]中发现的双关键ISING(DCI)相是一个分数拓扑阶段,散装中具有无间隙的majoragan模式,每条线是一半的拓扑不变。使用数字和量子字段理论方法,我们表明,在存在线Inter-wire跳振幅$ t _ {\ bot} $的情况下,相位图在$ \ sim 1/t _ {\ bot} $下方保持稳定。较大的界线跳跃振幅导致两个整数拓扑阶段的出现,在大型相互作用下也稳定。他们在两条电线之间共享的每个边界都有一个边缘模式。在大型交互作用下,这两条电线由Mott Physics描述,其中$ t _ {\ bot} $跳高幅度导致了顺磁顺序。
We investigate the topological phases of two one-dimensional (1D) interacting superconducting wires and propose topological markers directly measurable from ground state correlation functions. These quantities remain powerful tools in the presence of couplings and interactions. We show with the density matrix renormalization group that the double critical Ising (DCI) phase discovered in [1] is a fractional topological phase with gapless Majorana modes in the bulk, and a one-half topological invariant per wire. Using both numerics and quantum field theoretical methods, we show that the phase diagram remains stable in the presence of an inter-wire hopping amplitude $t_{\bot}$ at length scales below $\sim 1/t_{\bot}$. A large inter-wire hopping amplitude results in the emergence of two integer topological phases, stable also at large interactions. They host one edge mode per boundary shared between both wires. At large interactions, the two wires are described by Mott physics, with the $t_{\bot}$ hopping amplitude resulting in a paramagnetic order.