论文标题

INQMAD:增量量子测量异常检测

InQMAD: Incremental Quantum Measurement Anomaly Detection

论文作者

Gallego-Mejia, Joseph, Bustos-Brinez, Oscar, Gonzalez, Fabio

论文摘要

流动检测检测是指检测数据流中异常数据样本的问题。这个问题提出了挑战,即经典和深度异常检测方法并非旨在应对概念漂移和持续学习。最先进的流动异常检测方法依赖于使用哈希函数或最近的邻居依靠固定内存,这些函数可能无法像移动平均值一样限制高频值或删除无缝异常值,并且无法在端到端的深度学习体系结构中进行训练。我们提出了一种新的增量异常检测方法,该方法基于随机傅立叶特征和量子测量和密度矩阵的机制执行连续密度估计,可以看作是指数移动平均密度。它可以处理潜在的无限数据,并且其更新复杂性是常数$ O(1)$。提出了针对12种使用12个流数据集的最先进的流媒体检测算法的系统评估。

Streaming anomaly detection refers to the problem of detecting anomalous data samples in streams of data. This problem poses challenges that classical and deep anomaly detection methods are not designed to cope with, such as conceptual drift and continuous learning. State-of-the-art flow anomaly detection methods rely on fixed memory using hash functions or nearest neighbors that may not be able to constrain high-frequency values as in a moving average or remove seamless outliers and cannot be trained in an end-to-end deep learning architecture. We present a new incremental anomaly detection method that performs continuous density estimation based on random Fourier features and the mechanism of quantum measurements and density matrices that can be viewed as an exponential moving average density. It can process potentially endless data and its update complexity is constant $O(1)$. A systematic evaluation against 12 state-of-the-art streaming anomaly detection algorithms using 12 streaming datasets is presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源