论文标题
有限的一维系统中基于测量的量子计算:弦顺序意味着计算能力
Measurement-based quantum computation in finite one-dimensional systems: string order implies computational power
论文作者
论文摘要
我们提出了一个新的框架,用于评估在空间维度1中,在短距离纠缠对称资源状态上基于测量的量子计算(MBQC)。它所需的假设比以前已知的少。形式主义可以处理有限扩展的系统(与热力学极限相反),并且不需要翻译不变性。此外,我们加强了MBQC计算能力和字符串顺序之间的联系。也就是说,我们确定每当合适的字符串订单参数非零时,就可以通过任意接近统一的忠诚度来实现一组相应的统一门。
We present a new framework for assessing the power of measurement-based quantum computation (MBQC) on short-range entangled symmetric resource states, in spatial dimension one. It requires fewer assumptions than previously known. The formalism can handle finitely extended systems (as opposed to the thermodynamic limit), and does not require translation-invariance. Further, we strengthen the connection between MBQC computational power and string order. Namely, we establish that whenever a suitable set of string order parameters is non-zero, a corresponding set of unitary gates can be realized with fidelity arbitrarily close to unity.