论文标题

使用外部资源的T5重新置换器的检索增强

Retrieval Augmentation for T5 Re-ranker using External Sources

论文作者

Hui, Kai, Chen, Tao, Qin, Zhen, Zhuang, Honglei, Diaz, Fernando, Bendersky, Mike, Metzler, Don

论文摘要

检索增强已显示出有希望的不同任务的改进。但是,这种增强是否可以帮助基于语言模型的大型重新级别,尚不清楚。我们研究了如何使用从两个外部Corpora(商业网络搜索引擎和Wikipedia)检索到的高质量信息来增强基于T5的重新库。我们从经验上证明,检索增强如何显着提高基于T5的重新列车对内域和零射击的重新排列任务的有效性。

Retrieval augmentation has shown promising improvements in different tasks. However, whether such augmentation can assist a large language model based re-ranker remains unclear. We investigate how to augment T5-based re-rankers using high-quality information retrieved from two external corpora -- a commercial web search engine and Wikipedia. We empirically demonstrate how retrieval augmentation can substantially improve the effectiveness of T5-based re-rankers for both in-domain and zero-shot out-of-domain re-ranking tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源