论文标题

通过多视图对比度学习法律案例检索,以法律元素为导向的建模

Legal Element-oriented Modeling with Multi-view Contrastive Learning for Legal Case Retrieval

论文作者

Wang, Zhaowei

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Legal case retrieval, which aims to retrieve relevant cases given a query case, plays an essential role in the legal system. While recent research efforts improve the performance of traditional ad-hoc retrieval models, legal case retrieval is still challenging since queries are legal cases, which contain hundreds of tokens. Legal cases are much longer and more complicated than keywords queries. Apart from that, the definition of legal relevance is beyond the general definition. In addition to general topical relevance, the relevant cases also involve similar situations and legal elements, which can support the judgment of the current case. In this paper, we propose an interaction-focused network for legal case retrieval with a multi-view contrastive learning objective. The contrastive learning views, including case-view and element-view, aim to overcome the above challenges. The case-view contrastive learning minimizes the hidden space distance between relevant legal case representations produced by a pre-trained language model (PLM) encoder. The element-view builds positive and negative instances by changing legal elements of cases to help the network better compute legal relevance. To achieve this, we employ a legal element knowledge-aware indicator to detect legal elements of cases. We conduct extensive experiments on the benchmark of relevant case retrieval. Evaluation results indicate our proposed method obtains significant improvement over the existing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源