论文标题

利用视频事件的视频级别的语义一致性用于视听事件本地化

Leveraging the Video-level Semantic Consistency of Event for Audio-visual Event Localization

论文作者

Jiang, Yuanyuan, Yin, Jianqin, Dang, Yonghao

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Audio-visual event (AVE) localization has attracted much attention in recent years. Most existing methods are often limited to independently encoding and classifying each video segment separated from the full video (which can be regarded as the segment-level representations of events). However, they ignore the semantic consistency of the event within the same full video (which can be considered as the video-level representations of events). In contrast to existing methods, we propose a novel video-level semantic consistency guidance network for the AVE localization task. Specifically, we propose an event semantic consistency modeling (ESCM) module to explore video-level semantic information for semantic consistency modeling. It consists of two components: a cross-modal event representation extractor (CERE) and an intra-modal semantic consistency enhancer (ISCE). CERE is proposed to obtain the event semantic information at the video level. Furthermore, ISCE takes video-level event semantics as prior knowledge to guide the model to focus on the semantic continuity of an event within each modality. Moreover, we propose a new negative pair filter loss to encourage the network to filter out the irrelevant segment pairs and a new smooth loss to further increase the gap between different categories of events in the weakly-supervised setting. We perform extensive experiments on the public AVE dataset and outperform the state-of-the-art methods in both fully- and weakly-supervised settings, thus verifying the effectiveness of our method.The code is available at https://github.com/Bravo5542/VSCG.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源