论文标题

随机晶格的量子行走:扩散,定位和缺乏参数量子加速

Quantum walks on random lattices: Diffusion, localization and the absence of parametric quantum speed-up

论文作者

Duda, Rostislav, Ivaki, Moein N., Sahlberg, Isac, Pöyhönen, Kim, Ojanen, Teemu

论文摘要

离散的时间量子步行,经典随机步行的量子概括,为量子信息处理提供了一个框架,量子算法和冷凝物质系统的量子模拟。与经典的随机步道相比,量子步行的关键特性是其量子信息应用的核心,是传播中参数量子加速的可能性。在这项工作中,我们研究了量子步行的繁殖,这些量子步行在渗透生成的二维随机晶格上。在大规模的拓扑和琐碎的分裂步行中,我们在不同的时间尺度上确定了独特的前延伸前和扩散行为。重要的是,我们表明,即使是任意弱的随机去除晶格位点的浓度也会导致超级量子加速的完全分解,从而将运动减少到普通的扩散。通过增加随机性,量子步行最终由于安德森本地化而停止扩散。在本地化阈值附近,我们发现量子步行变得宽敞。量子加速的脆弱性意味着在随机几何和图上量子步行的量子信息应用的巨大局限性。

Discrete-time quantum walks, quantum generalizations of classical random walks, provide a framework for quantum information processing, quantum algorithms and quantum simulation of condensed matter systems. The key property of quantum walks, which lies at the heart of their quantum information applications, is the possibility for a parametric quantum speed-up in propagation compared to classical random walks. In this work we study propagation of quantum walks on percolation-generated two-dimensional random lattices. In large-scale simulations of topological and trivial split-step walks, we identify distinct pre-diffusive and diffusive behaviors at different time scales. Importantly, we show that even arbitrarily weak concentrations of randomly removed lattice sites give rise to a complete breakdown of the superdiffusive quantum speed-up, reducing the motion to ordinary diffusion. By increasing the randomness, quantum walks eventually stop spreading due to Anderson localization. Near the localization threshold, we find that the quantum walks become subdiffusive. The fragility of quantum speed-up implies dramatic limitations for quantum information applications of quantum walks on random geometries and graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源