论文标题
部分可观测时空混沌系统的无模型预测
TGDM: Target Guided Dynamic Mixup for Cross-Domain Few-Shot Learning
论文作者
论文摘要
鉴于有关源域的足够培训数据,跨域几乎没有学习(CD-FSL)旨在识别目标域上少数标记示例的新类。解决CD-FSL的关键是缩小域间隙并传输对源域上训练的网络的知识到目标域。为了帮助知识传递,本文引入了通过在源和目标域中混合图像而产生的中间域。具体而言,为了生成不同目标数据的最佳中间域,我们提出了一个新型的目标引导的动态混合(TGDM)框架,该框架利用目标数据通过动态混合来指导混合图像的生成。提出的TGDM框架包含用于学习分类器的混合3T网络和用于学习最佳混合比率的动态比率生成网络(DRGN)。为了更好地传输知识,提出的Mixup-3T网络包含三个分支,其中包含共享参数,用于分类源域,目标域和中间域中的类。为了生成最佳中间域,DRGN学会根据辅助目标数据的性能生成最佳混合比。然后,整个TGDM框架通过双级元学习训练,以便TGDM可以纠正自身以实现目标数据的最佳性能。几个基准数据集的广泛实验结果验证了我们方法的有效性。
Given sufficient training data on the source domain, cross-domain few-shot learning (CD-FSL) aims at recognizing new classes with a small number of labeled examples on the target domain. The key to addressing CD-FSL is to narrow the domain gap and transferring knowledge of a network trained on the source domain to the target domain. To help knowledge transfer, this paper introduces an intermediate domain generated by mixing images in the source and the target domain. Specifically, to generate the optimal intermediate domain for different target data, we propose a novel target guided dynamic mixup (TGDM) framework that leverages the target data to guide the generation of mixed images via dynamic mixup. The proposed TGDM framework contains a Mixup-3T network for learning classifiers and a dynamic ratio generation network (DRGN) for learning the optimal mix ratio. To better transfer the knowledge, the proposed Mixup-3T network contains three branches with shared parameters for classifying classes in the source domain, target domain, and intermediate domain. To generate the optimal intermediate domain, the DRGN learns to generate an optimal mix ratio according to the performance on auxiliary target data. Then, the whole TGDM framework is trained via bi-level meta-learning so that TGDM can rectify itself to achieve optimal performance on target data. Extensive experimental results on several benchmark datasets verify the effectiveness of our method.