论文标题
分析基于进化计算的神经体系结构搜索算法的预期打击时间
Analyzing the Expected Hitting Time of Evolutionary Computation-based Neural Architecture Search Algorithms
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Evolutionary computation-based neural architecture search (ENAS) is a popular technique for automating architecture design of deep neural networks. Despite its groundbreaking applications, there is no theoretical study for ENAS. The expected hitting time (EHT) is one of the most important theoretical issues, since it implies the average computational time complexity. This paper proposes a general method by integrating theory and experiment for estimating the EHT of ENAS algorithms, which includes common configuration, search space partition, transition probability estimation, population distribution fitting, and hitting time analysis. By exploiting the proposed method, we consider the ($λ$+$λ$)-ENAS algorithms with different mutation operators and estimate the lower bounds of the EHT. Furthermore, we study the EHT on the NAS-Bench-101 problem, and the results demonstrate the validity of the proposed method. To the best of our knowledge, this work is the first attempt to establish a theoretical foundation for ENAS algorithms.