论文标题
基于学习的估计和控制框架,用于接触密集型紧身任务
A Learning-Based Estimation and Control Framework for Contact-Intensive Tight-Tolerance Tasks
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We present a two-stage framework that integrates a learning-based estimator and a controller, designed to address contact-intensive tasks. The estimator leverages a Bayesian particle filter with a mixture density network (MDN) structure, effectively handling multi-modal issues arising from contact information. The controller combines a self-supervised and reinforcement learning (RL) approach, strategically dividing the low-level admittance controller's parameters into labelable and non-labelable categories, which are then trained accordingly. To further enhance accuracy and generalization performance, a transformer model is incorporated into the self-supervised learning component. The proposed framework is evaluated on the bolting task using an accurate real-time simulator and successfully transferred to an experimental environment. More visualization results are available on our project website: https://sites.google.com/view/2stagecitt